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Abstract

Linear programming versions of some control problems on Ma.rkov

chains are derived, and are studied under conditions which occur iii typi-

cal rroblems which arise by discretizing continuous time and state_ sys-

tems, or in discrete state -ystems. Control interpretations of the dual

variables and simplex multipliers are given. The formulation allows the

treatment of 'state space' like constraints which cannot be handled con-

veniently with dynamic programming. The relation between dyneaiuc programming

on Markov chains, and the deterministic discrete maxirlum princip]e in

explored, and some insight is c stained into the problem of singular s46l

chastic controls (with respect to a stochastic maximum principle).
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1.	 Introduction

1
This paper is concerned with several problems occuring in the con-

trol of a Markov chain (Xn }	 on the state space	 (01p ... ,N)	 - S ,,,9 with trans-

ition probabilities	 pij (a), where	 a,	 a control, takes values in a set	 Ui.

f State	 0	 is a desired target state and	
Poo 

(a) = 1; once in state 0,	 ul-

r- ways in state	 0.	 The terms	 u = (ul)...,uN),	 U  t Ui , denotes a control

vector.	 I.e., if the control vector 	 u	 is always used, and	
X 

= i, then

the value of	 a	 in	 p
ii

(a)	 is	 u(Y.n )	 = ui .	 Let	 T	 denote the first time

state	 0	 is attained, k(i,cx)	 the cost paid when the state is 	 i and con-

trol	 u(X )	 = u	 = u	 is used, and	 E 	 the expectation operator
i	 i

given thatn

XO = i, and the control vector 	 u	 is used.	 Then the cost is

T-1

h V(u;i)	 = Fi 	Z k(Xn,u(Xn)).
0

Define	 k(0,u) = 0.	 Then

(1)	 V(us i)	 = E,i Z k(Xn' u( Xti))
0

Define the column vectors 	 V(u)	 = (V(u; l) ^ ... , V(u;N))	 and	 K(u)

I(k4l,u1)^...,k(N1uN))•

Note that, if the	 N	 step transition probability	 pio ) (u)	 > 0

for all	 i, then state	 0	 is attainable and	 V(u) 	 exists.

Define problem (Pl):	 Let	 Ui	contain a finite Number of points

(which, for convenience, we assume are	 al,...,aq), or let the 	 n +1	 dimensional

1



set ( pi 1(Ui )' "'' piN (U i ) p k(i, Ui ) ) be 
a convex polyhedron with extreme points

included in ((pil(ar)'"''piN(ar),k(ifar)), r - 1,...,q). As-ume (Al):

P (N) (u) > 0 for all i and u, or (A2) : k( i, a) > 0 for all i,a andi0

I (N) (u) > 0 for all i and some u. Find the control u 	 ( u, ... ,
i0	

1	 uN) which

minimizes V(u;i), i = 1, .... N. Define V i = min V(usi).
u

The assumption on U  can be weakened, althougt: Vie form given

allows a relatively simple notation. Indeed any compact U  is suitable

if the pij (-) and k(-) are continuous. The convex polyhedron assumption

is satisfied for problems which are obtained by discretizing continuous time

bang-bang problems. See the example.

In Section 2, a linear programming formulation of (Pl) will be

given. Linear programming (L.P.) versions of many types of dynamic program-

ming problems are well known ( see, e.g.., [3]  - [51,  [9]). Indeed, a L. P.

version of (111) was given by Derman [6].  The variables in the L.P. form

in [6] do not seem to have a simple physical interpretation. However, the

form here seems more natural and has a more natural dual, namely the dynamic

programming equations for (P1)

N

Vi s E pij (ar )Vj + k(i,ar ), all i,r.
j =1

While experience indicates that the linear programming algorithm

(Simplex method) is generally inferior, in computational efficiency, to the

available dynamic programming iterative methods (for the type of problems

discussed !:ere), it is of interest since it is an alternative formulation which

sheds further light on the Markov optimization problem and, in addition, the

two important reasons:
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(a) There may be additional constraints on the probabilities

P( Xn = i) ( Section 2) . The dynamic progrtuwdng is not d :reetly applicable,

and the L.P. formulation yields useful insights into the optimization prob-

lem. Indeed, it i:- often desirable or necessary to add such constraints

in Markov control problems. See Section 2 for example.

(b) The L.P. formulation gives us insight into a form of a sto-

chastic maximum principle (Section 3), and the singularity problem of the

stochastic maximum principle .

In Section 3, which treats a finite time Markov optimizati-.n prob-

lem, it is shown that the Holtzman form of the discrete maximum principle

(7] is equivalent to dynamic programming, in the absense of 'state space'

constraints on the variables P(Xn = i), and that the control is often sin-

gular (in the sense that minimization of tfe relevant Hamiltonian yields

no information on the form of the control) in the presence of such con-

';Taints, a situation which often occurs with deterministic systems with

state space constraints.

2. Linear Programming and the Optimal Control Problem.

2.1. No ' state space' constraints. First a form of (Pl) will be

treated. Let R(u) = (pi j (ui ), i, j = 1 1 ... ,N) denote the reduced transition

ma'rix (state 0 omitted) corresponding to control vector u = (ul,...,uN).

The following knovrn results (2] will be used below.

Lemma 1. Assume (Al) . Then state 0 i:; attained w. p.1. and V(u) is the

unique vector solution to the vector equation

( 2 )	 C = R(u) C + K(u).

M
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If	 k(i,cx) > 0	 and (2)	 has a finite solution, then	 p(N) (u) > 0

(n) u 	 1	 as	 n -+ oo	 and	 C =Ind	
pi0 ( )	 — V	 A2)(u) .	 Under (	 , there is at. least I

one s w n	 u.

Under (Al) or (A2) there is an optimalimal control, and the least

cost vector	 V	 satisfies

( V = min[R(u)V + K(u,-].
u

'Remark. The property p Ni0(u) > 0 for all i assures that state 0 is

ultimately attained with a corresponding finite uverage cost.

Lemma 2. ( Howard's iteration in policy space procedure) . Assume (Al) or

(A2). Choose u 	 so that V(uo) exists. Assume u 	 isî ven Ana V(un)

exists. Choose un+l as the minimizing vector a in

( 4)	 min[ R(u)V(un ) + K(u) ] - R(un+1)V(un) + K( un+1)
u

then V( un ) ^ V - min V(u) .
u

Remark. The method in Lemma 2 i-- mentioned because of its relation co the
i

simplex method (see below). For many problems, it seems to converge slower

than the various backward iteration m:thods, e.g.

n+1 = min[ R(u) Cn
C 

	 + K(u)].
u

See [ 1] for a discussion of a better iterative method. 	 3

2.1.1. Introduction of Randomized Controls. For purposes of the L. F.
I	

Iti
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formulation and its generalizations, its useful to re •.,-rite (Pl) in an equi-

valent form.	 We supposse that	 Ui = (a
1
 ,... ,a )	 and allow randomized control;.

q

That is to say that, eat each time, the actual control action which is used is

randomly selected among the	 al,... 'C'O 
the probability which governs the

choice	 (or, equivalently, the control law) depends on the current state.

Thus, the control	 u	 is replaced by a sequencf^ 	 Y	 of	
N 
	 elements.

Y	 ( Yl , • • • , YN ),	 Yi 	is a	 q	 vector

Y	 =	 ( Yit ,..., Y
iq ).i 

q
Z Yi j = 1,	 Yi j 2 0,	 Y

ij	
P{ u( Xn )	 j	 Xn = i }

j	
l

If	 Yio = 1	
then the control at state	 i	 i:: pure and	 u(Xn )	 a j , when

X 
	 = i.	 Under the control law	 Y. the transition probabilities take values

P{ X1 	j	 I	 X0 = i,	 law	 Y	 used)	 = Pi 1x 1  - ,i }	 - pi ( Ti)j

r pij (ar ) Yir'

We now write	 V( y)	 and	 Ei 	and	 Pi	 instead of	 V(u) ^ Ei,	 Pi.	 It turns

out, of course, that the L. P. formulation does	 a non-random control.give

With this randomization, finiteness of 	 U i = U	 is equivalent to the sets

',
^'i	 (^'il(Ui)' "'' piN (lli )-' . % i,Ui ))	 being convex polyhedrons.

Lest	 M	 denote the average number of times that 	 aj	 is actually
ij	 q

used when state	 i	 is visited.	 Write	 Mi =	 Mij, and suppose that	 X0
=1

is random with	 P(X
0 = r)	 = µr, where	 µ - (1 1 ,..0 1 4N )	 is a column vector. Write

PT( X	 = ,i }	 _	 p^ n) ( Y)4	 = P{ X	 = j control	 y	 used,
µ	 r'	 ij	 i	 n

in.tial distribution, = µ} .
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2.1.2. The Constraints for L. P. By definition,

Le	 00

Phi = Z Pr( Xn * i) µr $ E Pµ( Xn	 i)
n, r	 n•O

= i),* µi 
+ n=OP1A n+l

M 	 PY(X - i u(Xnl - ^j)µr

00

= nz Pµ (Xn	 i ' u (X
n ) a ^'` j) .

From the relu.tion

Pµ(Xn +1 - i) _ E pji (czk )Pµ (Xn s j, u(Xn ) _ Eck),
k, j

e obtain

Mi k = Mi = µi +	 p j i (cxk ) Mj k, Mi	 C, i = 1 ) ... , N

k 	 `

or, equivalently,

(6)	 ^`i =	 [-p_^i(ak) + F)ij ]Mjk*
k, j	 `'

Define the transition matrix (again state C deleted) R(r)

(p ji ( rj ); j, i = 1) ..., N) . Now rjk = M  
k/Mj, 

and an alternate form to

(5) is

(5)

11
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( T1	 Mi	 = µi	+	 (	 E Pii(`VI '(e lk Mel
j	 k

= µi +	 rji ( ri)Mi,

In vector notation ( where 	 M	 is the column vector	 (M 1 , ... , MN ),	 and prime-

is transpo:;e)

(`3)	 M = µ	 x'(Y)M,	 M
ij 

^ 00

We now address ourselves to the uniqueners oi' the solution of (il,

Unless an obtained solution of' (8) is truly the vector of average oc-

cupancy times	 the L. P. formulation may riot give the correct solution.	 The

mutrix	 R( y)	 is said to be a contraction if' its eigenvalues lie strictly

N	 (N)inside the unit circle.	 This is equivalent to ([l]) the property 	 p	 (u) < 1
ijN	 J i

for all	 i,	 which, in turn,	 i.; equivalent to	 R (y)	 being a contract i on in

the sense that	 max Ci l	 < maxiD i l	 in	 C - RN (r)D.	 These properties are
i

equivalent to	 R n (u) --+ 0	 as	 n -+ co.

Lei=a 2.	 Suppose	 R( y)	 is ig ven.	 Assume either (i); 	 (Al),	 or (ii);

µ i > 0	 for all	 i.	 Define the cast

(9)	 Z =	 F,	 M.. k( i ' a)	 _	 M k(i ' Ti)
iJ ii	 i

k(i, y,)	 =	 -r j k( i , a )J	 ^^

Th_n there is a Unique non-negative solution (10) to (8),



f

A

(1C)	 M =	 (R' (Y)) C1N, Ro ( Y)	 1,
rr•0

and this solution is the vector of mean occuEancy times. Furthermore (9)-_ _	 -
can be written as (11).

00
(11)	 z = µ' an ( Y)K( Y)^ _	 µ iV(^ i)

n=0	 i

where V( yl i) = cost for (Pl) corresponding to randomized con! -r and

K( T) is the column vector

K(Y) _ (1(1,Y1),...,k(N,tN))•

If µi > C for all	 i, then any control law
(Yl' • • • YN ) ,	 or

equivalently, any	 (Mi j ) which minimizes (9) subjectect to (8),	 also :solves

(Pl), and conversely. 'En particular min z	 µiVi. The converse st-
i

ment is true even if some of the µ = 0.

Proof	 Only the uniquen r ;s of the solution to (8) will be shown, for the

rest follows easily from this. Any solution of (8) is of the form

00

( 12)	 M = lim ( RI (Y) ) nM +	 (R, (Y) )r1µ.
n	 n--0

Thus, we need only show that R(y) or R 
N
(Y) are contractions in the

appropriate senses.

1'
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Assume: M. The eigenvalues of all R(u) are interior to t.h f- unit

'rF controls  u	 nd there 9re oral a finite number of

	

circle for nil pu, a	 y	 os-p

sibs: ities for u. Any R( 1') has the form

'	 R( T) _	 ^ i R(ui )^ ^i ? G^	 ^i = 1,

where ui range.- over all possible pure control vectors with values in

U1 x...X UN . But, since R(Y) is a non-negative inatrix, the eigenvalue

a(R(W with largest absolute value is real and positive and

e(R( X)) s	 Xi e(R( ui )) < 11

T	 i
thus proving uniqueness under (i).

Assume (ii). If' µi > 0 for all i, and R n ( y) does not tend to

the zero matrix, then (12) implies that some M i is infinite, a contradic-

tion. %.E.D.

Remark.	 Lemma 2 can be strengthened under (A2). First we make

the following observation. 	 Let µ 1.	 > 0 .9	 i	 = 1, ..., r	 with all other	 µ.1 = 0.
• Let S 1( r}	 denote the states 1, ..., r,	 all those states connected to

1,...,r and all transient states. Let	 S2(y) denote the remaining states

(a positive recurrent class). A modification of the proof' under (A2) yields

that 7- ij 	< ao	 for	 i E(r) S 1( Y)	 and all j.	 Hence f	 E for	 i	 S 1( r)

n)
n-0

p^ ( Y)
	

-+0	 and	 the	 f'or•m (12) implies that the component M.	 of the solu-ij 1

t
t
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tion to (8)	 is the mean occupancy time. For	 i c S2 , (12) indicates thatf
the component

M 
	 of the solution to (8) can be larger than the mean oc-

cupancy time. This turns out to be unimportant under (A2).

We also note that, if	 µi > 0 for all	 i, and	 z < oo,	 and

k(i,ce	 ; E > 0,	 then	 RN ( Y)	 must be a contraction, for otherwise we would

have	 z a oo.

Lemma	 Assume (A2). Let Y be optimal. Then the M i solving (8) are

the mean occupancy times, M. = 0 for i 	 S 	 and p (Y) = 0 for- i—.-^'—^	 1	 2 (y')., 	i J

S 1( Y) ,	 E 002( ;) . Also ply ) ( Y) -+ 0 as n	 ^, for i r Sl( y). Thus (10)

and ( 11.) hold.

Proof; All states in S
1. 
(Y) are transient, and non-transient states (i.e.,

those in :;2 ( Y)) cannot be reached 'rom states in S 1( Y), for otherwise the

representation

z = ( lim M' Rn ( Y) K( Y) + µ' E Rn ( Y) K( Y)
n	 0

and the positivity of	 k(i, yi ),	 imply that z = +w. Let	 i E S2 ( Y) .	 Then

M.	 is not effected by the values of	 M. E	 Sl(y), since

Since	 k(i, Yi )	 > 0 and	 Y	 is optimal, the form (9) implies that	 Mi = 0.

Thus	 MI R n ( Y)	 -4 0 as	 n -► co,	 proving (10) and ( U). q.E.D.

1
i
i
1
A
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Remark on the equality con-traint (6). If	 k(i t cl	 4 0,	 the equttl-

ity constraint	 (6) (or (8))	 can be replaced by

(6')	 M.-	 pji (cx^) Mj^ ? µi , A:i j a 0

or

(6..)	 Mi 4 µl +	 p ji(ai)m'ji.

We will give the proof for all µi > 0 and show only that the minimum, oi'

(9) under (6' ) is not less than the minimum of (Cf) under (6) - which, in

turn, implies that the optimal solution will give an equality in (61).

First obser ie that (6 1 ) implies that M  ? µi > 0. Let ( Mi . )
J

solve (6 t ) . Define, again, ri j = M  j /Mi , and let R( r) be the corresponding

transition matrix. (6") can be written as

M ? µ + R' ( -()MY

which implies that R'	
N

p	 ( (Y))	 is a contraction. Thus th °re is a uriique

non-negative solution to

M_µ+R'(1')M,

aria
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ti	 ti
M-M 4 R' ( r) (M-M)

which ( since (R'(-r))  - 4 0) implies that

M z M.

Then the set ( Mij = Mi rji } satisfies

ti

M 	 Mij.

Since k( i .0 ce j ) ? 0)

ti
z= 	 Z k(i,cxj )Mij s	 k(i,o,j)Mij.

i,j

2.1.3. The Dual form for L. P. Write the system ( "() in the

vector form

where 4' = (Mll, M12 , ... , Mlq) M21 , ... ,Nq )  i s the column vector of L. P.

variables and -W and .W	 are the N x Nq matrix and Nq rcw vector,

(13a) and (13b), resp.

f

t,

d
t

^I
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-pll(al)+1, ... ,-P11(aq)+l'	 -p2l(al) 9 ... , -P21( C1 	 ..., -pN1.(a1) ..., -pNl(aq)

-P12 ( a 1 ) , ..., -p12(aq)	 -p22(a1)+l, ..., -P22(aq)+1, . .., -PN2(a1), . . a  - i-N^,(a^)

( lea)

o

- P lN ( al ), ..., -p1N(aq),	 .	 .	 ' -PNIJ(01.)+1,...,-FNN (O I)+..

i

ii

s

i

i

i

i

i

1
I

(13b)	 k( l,al), . .., k( l,aq), k(2,, a1 ), ..., k(2 V () q ), ..., k(N,al), ..., k(N,aq)

Let	 C =	 ( Cl , ... , CN ) be the r.olumii vector of dual variables.	 By

the usual rules, [ 8,	 p. 1271, the dual form of the L. P. ij

maximize	 iCi
i

with constraint

(15)	 SJ(I C < M,

and the C  are unconstrained in sign.

Writing out (15) in detail and rearranging some terms gives the

Nq inequalities

N

( i6 )	 C  s E P
ij ( ar ) C

j + k(iYO
j=1

((i,rt ") inequality) i = 1,...,N; r = 1,...,q.

(14)
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It will be shown below that, if ,tll	 µi > 0, then for any optimal

'solution,	 Pdi 	 ^ 0	 for at most one	 j	 (depending on	 i) , and M 	 3 µi > 0.j
Denote this	 d	 by	 r(i)	 and let	 u 

	 denote	 ar(i) .	 Let	 C	 denote the

optimal dual vector. 	 By the complementary slackness theorem of L.P.,

there is equality in (16) for the 	 (i,r(i) ) th	 lines.	 Thus

N
(17)	 Ci = min[	 E pii (a)Cj 	+ k(i,a)]

a	 j =l
N

_	 7pi j ( ui ) C j + k k i, ui )
Jul

where	 a	 ranges over	 L' = (al,.-,aq), which are precisely the dynamic

program7ing Equations (3). 	 Thus, for the optimal dual variable T

C.	 = V.	 = min V(u;i).
1	 i

u

The L. P. dual requires a maximization. (14), but, any vector	 C

which actually satisfies (16) is not a true cost vector (for some control [

u), unless it is the optimal cost vector.

If not all µi > 0, but k(i,aj ) ? F > 0, some of the optimal Mi

will equal zero (see Lemma 3 and the remark preceeding it). Let M.i > 0

and Mis > 0. Then, by the complementary slackness theorem, for all at,

N	 N

(17')	 C. =	 pij (as )Cj + k(i,as) s E P. Jat )Cj + k(i,at).
j =1	 j =1

Furthermore, by taking suitable linear combinations in (17') (T = optimal

1
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control law)

N	 N
(1(")	

Ci.I^ l 
pij ( Yi ) Cj + k(i,Yi )	

E Pij(at)Cj + 
k ( i ,at )

,i al

0 fl

C.

( let

'ar( s

Since pi j ( Yi ) s

we conclude that

optimal control

then (ar(1)'

or i r Sl( Y), j E S2('-)' and S l( Y) are transient,

min V( Yf i) = V i , and that there is a non-random
Y

S 1( Y1 = 1, ... , s, and Mir(i) > 0 for i - 1, ... , j;

)) is an optimal control, and S 2(y) is never reached).

2.1. 4. The :'imple •r Method and Iteration in Policy Space.

Theorem 1. Under (Al) or (A2) , there is an o timal non-random control.

1. e., there is an admissible set (M ) which minimizes z. and for which
ii

Mi j > 0 for at most one j for each i. 1 C µi > 0, the basic solution at

each it( ration of the simplex method satisfies Mi > 0 I'or • only orie j

for each i.
Prow': All assertions have already been proved, except the last. There are

at most N of the (Mij } which are non-zero at each iteration. Then M. ?

µi > 0. If Mir > 0, Mis > 0 for s	 r, then M  = 0 for some J. which

contradicts M.
J	 J

? µ. > 0. Thus M 1J.. > 0 for one and only one j, for each i,

fi	
at each iteration of the simplex method. Q.E.D.

1	 Simplex Multipliers. Assume either(Al) or A2 and also that

under (A2), the simplex routine is initiated with a pure control u or a

random control Y for which RN(u) or RN(Y) is a contraction. Let
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A = [ a l ,. , , ,tiM) be an N x M matrix Ath N < M and columns a i . C or) •-

sider the L. P. problem of minimizing Ox = z with constraint Ax o b,

where c' = (c 1 , ... , cM) . Let ri , , . , , x i	
be the basic solution at a

.l	 N
given iteration. Then([8^, there are numbers (simplex multipliers)

TT1,' . . '77 N 	 so that

(18)	 ^' a 	 - c i = 0, n = i ..	p N
n	 n

n' _ (7r 1, ..,, nN )	 row vector.

Define q i'

N
( 19)	 77 ai - ci = F n rari - ci	 qi.

ri	 n	 r=1	 n	 n

Let q  = max qj , Then the simplex algorithm chooses xi as the new entry
J

into the basis. If all q  s 0 P the current basis is optimal.

Let µ i > 0 for all i, and let ( Mij(i) , i = 1, . , .,1V} be the

basis at a given iteration. Let v i = U j (i) 
-1 

and 1i = ( v l, .. , , vN ) , For

our L. P. problem, the multiplier results ist there is a vector

(77 l, . •.,71 N) = 7	 so that

N

(^0)	 ^► i - Y- pij ( vi ) 7T j - k(i ) vi ) = 0,	 i = 1, ., .,N.
j=1

The new basis entry Mir is chosen as followso choose the i ., r for which

M

1

1

i

I
I^

1
1
I
1
t
1
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N

n i - E pij(ar)ri - k( i,ar) = qir
J=1

is largest. At the optimal (optimal control	 u s (ul, ..., ur ) )

(21)	 n =	 p (ui ) n + k (i , J)	 S p (: ^ ) n + k ( i , a )
i	 ,j =1 ii	 i	 j =1 

ij 
r ir

for all i and ar.
'	 By (20) and Lemma 1 , 

IT 
= V(v; i), the cost corresponding to

initial state i. Eqn. (21) is merely the principle of optimality once

again. The method oi' selecting the new basis variable is clearly a :,pecial

case of iteration in policy space (Lemma (2)), where only one control is

changed at a time. This was first observed by DeGhelli nck [9] for the

'	 average cost per unit time problem. This observation suggests that the L.P.

algoritizi is no better than algorithms which are available for the original

dynamic programming problem.

2, 1, 5• Elabor-;tion of the Dual Form ( 1 1+), (16) .

'	 Assu;-ne either (AL) or- (A2) in this Section. If either

(i) U = Ui	(al, ...)ac)

or

(ii) Si — (pil(Ui ) ' " '' piNft	 k(i, Ui )) is a convex polyhedron Op
for each i,

_

iNg

W1

MO

4

if
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then (Pl) haS an L. P. form, with dual form	 ( 14), (16). It h • +R already

been noted that (i) and (ii) are equivalent. Instead of finiteness of the

Up suppose temporarily that (A3);pij(•) and k(i, • ) are continuous and

U 
	 is compact. If, in addition

r'

( iii) S i is convex,

then the r^ei_-ral_ized programming method (G.P.) of Wolfe [8] can be used

to :solve (Pl), and the dual of the G. P. is precisely (14), ( 16), where

ar ranges over the Ui'

Under (A3) alone, we can convexify the S i by allowing ran-

dominations, and thus appl,y G. P. However, it is interesting to seep by a

more direct argument, that the solution to (1 1+) - (16) is also the solu-

tion to (Pl).

Theorem 2. Assume 	 and eitner (Al)	 or	 (A2). Then there is a solution

to (Pl) . The opt_imal cost vector V	 solve- (14), ( i6 1 )

(16 1 )	 Ci 5	 pi J ( v i ) C 
i  + k ( i , 'Ii ) , vi E Ui

J

C s R(v)C + K(v),	 v = ( v 1 , ...,vN).

Proof*. 1°. The first statement is known to be true [2]. By the principle

of optiinality ', the optimal control u = (u l, ..., UN ) and least cost satisfy

I I

1
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V = K(u)V + K(u)	 S R(v)V + K(v),	 all vi 	E	 Up	 v	 - (vl,...,vN).

' Thus V	 satisfies (161).

2C .	 If vectors A F B	 satisfy (16 1	^ then	 max(A,,B)	 (take the

' max component by component) satisfies (16t) by the following argument.

A	 I E	 a Ai	 Pi j (	 )	j + k i(	 , a )
j

all	 cx, i

B 	
1	 pij (a)Bj + k(i,a)

j

max(Ai ,Bi ) pij(a) max(Aj ,Bj )	 + k(i,a).
j

3 o Next	 it is shown that all vectors W	 satisfying (1E 1 ) also

satisfy W s V.	 This implies that the Get of vectors satisfying (161)

is a lattice with maximal element V, and proves the theorem.	 Let	 U	 sat-

isfy (16 1 ) Ath	 u  > Vi . Then	 W = max(UV) satisfies (16 1 ) .	 Write

W 	 = Vi +E i' 	E 	 > 0	 for	 i = 1, .	 r	 and	 E S = 0	 for	 s > r.	 Then ,	 using the

fact V	 = V(u) ,

pi j (ui )w j	 + k( i, u i )	 _	 pi j (ui ) V
j

+ k( i ) ui )	 +	 pi
 (ui ) E
j	 j

r
= V.

1
+	 p.	 (u	 ) E .	 ?	 W.

lj	 i	 .7	 i = V. +Ei	 i1

and

r
pij (ui )F j ? Ei,	 i = 1,...,r

1

1
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r
which implies that 	 E p	 (u) s 1 for all n. This contradicts the fact

Jul  ij
that Rn(u) -♦ 0. Thus W - V. Q.E.D.

' 2n addition t	 s^ v :;e that we e-•	 Additional constraint. Io ('(} ip o	 require

satisfaction of the inequality constraints

(22) E e  r Mir 9 bso	 s ' j , ...' x.

i, r

Let the dual variables be C ... C	 C	 C,	 where the C'	 i 3 N
h	 ' N'	 N +1'	 ' i^ a 0,'	 1'	 '

cor esponds to the i th equality in (7) and CN+1 correFponds to the ith

inequality in (22) . Then, for the dual problem, the C i., i ii N, are un-

constrained in sign (:g ee rules in	 [ bJ,	 p. 125-'O and th(. CN+i'

0 < i 6 1, are non-negative. The dual equations can be written as

N	 i

(23) CE 	 + [ r^1 ei- N+r	 k ( i ^'^ s ))	 j

s = 1, ... , q;	 i = 1, ... , N,

and we maximize	 J

N	 Q

(24) i µ i 
C 
i	 i siCN+i = Z.

1

Cuppose all CN+i are given. Th y:.. (23), k24) is equivalent

to ti problem of computing the optimal control for the cost

i

^I
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k(i,as) _	 eisCN+r + k(i ' n , ) .
r=1

f
r

In many control applications, the eis ^ 0. See example below. Then the

dual L. P. i , in .i sense, equivalent to finding the optimal control for a

cost rate k(i,a) which weighs (positively) the constraint. I. e., suppo:=e

= 1 and e l = 1. Then, we seek the control which minimizes 	 Mtjk(i,a^)
i, J

subject to the mean time to absorbtion being no greater than 6

k( i, a) = CN+1 + k(i, a) .

Thus, the equivalent coot C = ( C l; ... , C 14 ) is

00

( 25)	 C.1 	 CN+1	 time to absorbtion + Ei L k(X n, u(Xn )) ] .
Tl^

If Si ? 09 the form (24) suggests that we want to find the

least weights CN+i, for which the control which minimizes (25) also satis-

fies the constraints (22). Note that the optimal controls for at most i

states may possibly be randomized, since the basic solutions of the primal

problem may have as many as N+i of the ( Mij ) non zero.

2.5. Example. To see how 'state space' constraints of the form (22)

may appear, we consider a simple Markov chain problem which is a discretization

of a continuous time problem. Consider the systeru y = u+a^, where ^t is

white Gaussian noise and iul 	 1. In Ito equation form, the system is

4irt
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dx l = x2dt

dx,.G = udt + adz

where zt is a Wiener process. Suppose that we wish to drive x  =

(xlt'x2t) to the target line T in Figure 1, in minimum average time.

By the method in [ 1), an approximating Markov chain (X n ) ( whose state

space is the collection of nodes in Fig. 1) can be obtained. Let h

denote the distance between nodes i.n Fig. 1, Ath h < a 2, and let e 

denote the unit vector in the i th coordinate direction. Then fo, x

on a node not on T. the transition; probabilities of the Markov chain are

Px x+e 1 
h( u) = hl x21 /(Q2 +hI x2 `) if x2 ? 0

=• 0
i f' x2 < 0

Px., x-e lh ( u) = 0
	

if x2 ? 0

hl;:2I^(CY	 ix21'	 if x2 <0

Px x+e, h ( u) = (a2+hu)12(a2 +hl x2 1 )

Px J, 	 2x-e h(u) = (Q2-ru)/2(Q2 +h1 x2 1 )

k(x, u) = k(x) = h2/(Q2 +hl x 2 ' )

In order to solve the m nimum average time to (the nodes on) T

problem for (Xn^}, it is necessary to truncate the space. To do th; s ,re

1
1

9
a

D
0

J
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fix an external boundary B as in Fig. 2, and assign transition probabili-

ties on B to be consistent with the internal dynamics in some way. Several

	

'	 proceuures are possible, 'aid, for our purposes, the exact proce= dure is un-

important. Suppose only that., on the indicated segments of B, the process

	

'	 can move in the directions of the arrows with given probabilities. of

course, specifictition of an outerboundary may be part of the original prob-

lem statement.

	

1	 Let us next consider Come state space constraints. A reasonable
constraint (considering that the model may not be adequate for large Ixl

any way) is

(i): Average time on boundary = z 	 ^ M s b.
i E B j=1 

i.J

(1) denotes the average time on the boundary for the (X n) process. If'

we wish an approximation to the original continuous time problem, with the

a,aditional constraint that the -iverage time the original process is on the

tboundary B. we need to take into account the fact that a unit tLme for the

(Xn) process is not a unit time for the x 	 process. The details must

be omitted due to space limitations, and the reader is referred to '113j.

It will suffice to say that the weighted average

q
iEB 1 j=1 lj

-1
is required in lieu of (i) where ai = (Q2 + hl x201 where x2 is the

second component of the vector x at node i.

M

i

1
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In general, there may be a region	 which it is undesirable to

enter, and we can introduce

ei 1J Mi 

J
5 S.

i^	 j =l 

For another type of example, suppose that fuel has an associated

cost, Note that the pi (u) are line-,r in the con,•ol u. Let ^ i =

P(u(X rl ) _ + 1 I Xn = i) . If f i = 2 , th en the average (or actual) control

at state i is zero	 Indeed, we can suppose that the actual applied

control is 2^ i -1	 since this gives the same transition probabilities

as the r,4ndom control. In genera., the average cost of fuel at state i

is 12f^ i -1j . Defirif_ Mi, M 	 as the Mi .
J
, where j corresponds to u = +1

and ui = -1, resp. Thc_ri, the average fuel used is

(iv): F =	 I Mi - Mi r a ii

-and, 1.ve can optimize with constraint F s b. The constraint (iv) can be

put into a linear form by the introduction of suitable auxiliary variables as

follows;	 Minimize	 (Ml + Mi )a i with the constraints (6) and Vi - WI
i

Mi - M 	 and V 1 ? 0, W 1 	0, and

(V1 + W1 )1	
i -

(See [7], Sec. 5.3 for a similar substitution.)

1

1

^I

J
9
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Ex•inple Continued:	 Numeric • ,1 Result.	 Let	 h - .55, Q2 = 2.	 Then

for the region of Fig. 2, we will have	 N - 195	 states, including the 3 tar-

get states.	 The	 k(x)	 on the outer bound%ry nodes are 1.5 of what their

vfilues would be were the node riot on a boundary, and we let the 	 pii (u) be

Iindependent of	 u,	 for	 i	 on the upper and lower boundary. 	 u 
	 (Eqn.	 (6))

equals one for the 0	 marked state in Fig. 2. 	 Note that the immediate
effects of the control 	 u	 are on the vertical movement only.	 The control

values	 (± 1)	 for the minimum =average time problem are given in Fig. 	 :).

Denote	 T* = minimum average time = minimum average fuel. 	 Figs. 4 and 5,

plot the control values for 	 6 = .9T*	 and	 .75T*, resp., and indicate the

expected decrease of control effort on the counter clockwise side of the
S

switching curve as	 6	 decrease:.•.

Note that the control value	 u = 0	 is singular (see also the

end subsection of the paper) in that either the right side of (23) is mini-

mized (for this example) at	 as = ± 1, or else it does not vary as 	 a	 varies

in	 [-1, +1]s	 i.e.,	 if the optimal control for sta* P	 i	 is zero,	 it c73n

never be determined b	 minimizing the right side of 	 2'1Y	 g	 g	 (	 ,,	 -is it could if there

-re no side constraints.	 The examplo also emphasizes the relationship be-

twecn singularity and randomness of a control.

3. Tie L.	 P.	 Form of the Finite Time Problem.

Consider the dynamic programming problem (P3):	 minimize,	 for

each i = 1,...,N,

F
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n
E'1 	k(Xn,u(Xn))

0

where Tr - (uo, ul, . .., un-l ) i-0 a sequence of control vectors, ui being

used at time n-i. (P^) is equivalent to the following L. P. problem. Let

Yi l (m) - P(Xm = i, u(Xm) = 01	 Minimize
J

n g N

(26) z = Z	 Z y . . ( m) k( i .9 UP
m^ ,j=1 i=1 1 J	 J

1
with constraints (the Chapman-Kolmogorov equation) F

yi (0) _	 yij (0) = µii	 i = 1,... ^T T̂ ,	 yi J (m) ? 0

J
(27)

yi(m+i) _	 yi .(m+l) _	 yk^(m)pki(a^), m = 0,1,..,,n-l;
j	 J	 .^, k

f
where all µi > 0 and	 µi = 1. We will write the L. P. egns. for the more

general problem (P4) *. minimize (26) with constraint (27). for any ui ? 0

and the inequality constraints

(28) ai (m) Yi ( m) s ^, m
J	 J

(28) includes only one constraint for each time m, but the general case is

,just as simple.

Define the row vectors with q components
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ti

piJ	
=	 (Pi j ( cz l ), • .., pi j ( aq ) )

k(i)	 _	 (k(i,cx1),...)k(i,aq))

e
ai(m)	 (ail( m),...,"iig(m))

e
and the column vectors	 (with	 q	 and	 Nq	 components,	 resp.)

Yi(m)	 _ ( Yil(m), ..., Y ig ( m ) )

Y(m)	 _	 (Yl(m),...,YN(m))-

Then the simplex tableau can be written in the form 	 of Fig. 3.

Let the column vector 	 C(m)	 = ( C l 
(m),...,CN(m))	 be the dual

vector to the	 mth group of equations in Figure 3.	 The dual of (P4) is:

maximize

(29)

ri

CI (n)µ	 -	 C i bi ,	 C. 	 ? 0
` 0

with the constraints

ti
C i (n)	 = Cnaii (n),	 2	 =	 1, ..., q

(30) N
Ci(m-1)	 s	 7- pij (ai )CJ (m)	 + k(i,ai )	 + Cw--1) laii(m

j=1

all	 i, m, .2 .

^o

3

A



T"

0	 0 ,i z

I

,--4	 z

0 0 o a

jH
O w

jH	 O

w

Q

^	 z
O..	 az

r-A	 r9
a	 a,

0 0

1H ^

O ;^

O v

cd

?H	 O

'O.^z
cd

r-1

f	 a^
w

p	 t H
1	 1 I •

w

r

O O

ZH	 O
a.	 a
1	 1

II	 II
II ^II

Z O 11

O cp0	 c^

O	 O o	 z
6	 U	 V U

N

H ^

rp 1

z

x
w
•
•
•
w

V

w

1

N\

W
ti

4D
.r4

P
f

ii

w

z
w
•
•

w

r-1

.sC

w

z

w

x



N

it

M

r

29

In the absense of the inequality constraints (28), the systtm (30) is simply

the dynamic programming equation. (30) can be put into a more convenient

vector form as follows. Let w = (ai1,...,aiN) be an arbitrary control.

Define the column vectors

K(w) = (k(l,ai ),...,k(N,ai ))
1	 N

a( w
' m)	

(ali (m) ' - ' -, % i
N 
(M))

1 

Then (31) is equivalent to (30) .

C(n) s Cna(w f n)

(31)

C(m-1) s R(w)C(m) + K(w) 
+ Cm-la(w;m-1)

for all control vectors w.

4. A Maximum Principle for Markov Chains.

The linear programming formulation treats the control and state

simultaneously, in that the 
MiJ 

or 
yiJ 

are the free variables. Next,

by a direct application of the deterministic discrete time maximum principle,

a form of stoch•istic maximum pri.2	 _ for the fixed finite time Markov

problem will be derived, in which the control and state are treated analog-

ously to their treatment in the deterministic problem.

Define pin) =F( Xn = i). The probabilities pi n) will be the

1

I
1
I
t
1
1

I
OF

1
i
1
1
1
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dynamical variables. Again U = (Celp...,czq), and 4 suppose that the con-

trol variables are the probabilities

	

^n= P(u(Xn )	 a^( Xn = i).

Indeed, whether or not the solution is a pure control, it is (one , more)

only by allowing randomization that the discrete maximum principle will be

applicable. Define the vectors P
n _ (fin ^. ^^^n ) and ^n = (,n^...^,n).

	

i	 11	 lq	 1	 N	 ^

0n takes the place of the u = (ul, ..., uN ) of the dynamic programming

mproblem ( and the Y of the L. P. problem) . Let R( M ) = (Pi j ( ^i );
1,...,N) denote the matrix of transition probabilities (with state

0 deleted) under the random rule gym; i.e.,

Pi j Wj) _	 Pi	 i fo
2

Define the (N) column vector K(f m) _ (k( l,^i), ...,k(N,^m ) where

	

k(i,fm) _	 k(i,a )pm
ii

The problem to be treated is (P5), a slight extension of (P4) .

The dynamics are

	(^2) 	
p(m+l) = R' (Pm) P( m) _ ( R, 	 (Pm) 

p( m ) _ p( m ) ) + p(m)

f(P(m) ,^m ) + P(m) , m = 0, 1,.,,,n-1.

r
^f

J
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The cost is

n
(33) z = E	 Z k ( i , ai

 
)Pim)^ij _	 K'(f M)'P(m),

m-O i, i	 m

with constraints

G0p(0) s 00, Gnp(n) . ^b

(34)

Qip(i) ii Si „	 i = 0,...,n^

where GO, G  and the Qi are matric es of full rank, and bG, bn and bi

are suitable vectors. Definep (M) by o0) = 0 and

p(m+l) s p(m) + f 
( P(m) , ^m ) = p6 +K 1 (^m)P(m)0	 0	 0	 0

^ n)Thenp^	 = Z.

Observe that the set

f(p(m) I gym)

f0(PW,Pm)

is convex in the control vector P m. It is easy to see that the conditions

of the discrete maximum principle hold for the set (33) - (34)	 (see

[ i, Chapter 4], and note that we change some signs here in order to bring

the result in closer conformity with dynamic programming usage). A direct

transcription of this discrete maximum principle yields

r

I

k



TT (0)= 0o ^.0 ,	 (ri) = (0)GI  %n + `fin Xn

M = 0, ... ,n-1

and the transversulity conditions

(35b)

3

J
i

J
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Pheorem `.	 Let	 N o , ... ,f3n-1 	a= p(° ^, ..., b(n	 b,. the optimr4l con_ trel and

-t= r_P.	 Then th_er_e. are costate vectors ►^(0),...,n(n), d vectors

x	 i 0 ( ul1 components m*- nor,-r ► rgatiye) , and vectorz x0 , Xn	 a_ a scalar

n° ; 0. (Not	 all	 the	 T1°,	 r(0),...,n(n), X0,	 Xtl	 aro zero.)	 The	 Tr(i)

. at_-,fy the ad Joint egwition

(35a)	 r(m) s n(m+l) + [R(Pm)-Ij r(m+l) + 7r oK( 0 	+ ` 
gym

i

e

and

(35c)

hefine the Hamiltonian

	 F

H(p(m),f'(m),7r.T4,m) = r°K I (f M ) p(m) + 7r , f(p(m)pfm).

D
Then	 I'
( 36 )	 H(P ,f3mY71(m+1))77°,m) s H(^M) f M,T(m+l),770ym)

	

(1
H
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for all ^ i , or equivalently,

(37)	 (P (m))'[R(fm)7i(m+l) + r,°K(fm)]

::e P(In)[R(Pm)r(m+l) + 7r 0K(Pm)]•

In terms of components (37) is

( 37a)	 Pim ) [	 Pig (^ j ) r „(m+1) + r °k(i, fi) ] 5 pim) [ pij (Pm)7J(m+l) +7t °k ( i , i) ]
J	 ^

71 ° > 0; thus we can yet r° - 1. Let GO = I.

en initial probabilities. Suppose that the

absent. Then, r(i) is the optimal dynamic

n-i steps to go, and (35a) and ( 37) com-

Remark. It can be shown that

'Then b0 =	 a vector of giv

other constraints of (34) are

programming cost vector, with

bine into

7r (m) = R(Pm )77 (m+l) + K(Pm) s

R(Pm)7r(m+l) + K(^m), r(n) = 0, m = 0, 1, ..., n-11

which is precisely the dynamic programming equation (3).

r.	 w

1

•1

^F

E

F

^Q
Q

fi
El

li

f

{

1
1

Remark on Singular Controls. The set

is a convex polyhedron, as a l varies

the minimr...::! of the r. h. s. of (37) lies

if the minimum falls on more than one

in the convex hull of the set of vert

(Pij (Ri ), i = i,...,N, k(i,Pi)}

over its admissible values. Thus,

on a vertex of the polyhedron - or•,

vertiex, it also falls

ices on which the minimum occurs. Con-
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sider the example (a typical discrete problem derived from a continuous time

problem which is linear in the control). In that case there are at most

two extreme points to the polyhedron and p11 (t3m) has the form fip ifi (+l) +

(1 -^M ) pi J ( - i), and k(i, p ) = k(i) and we can write the r. h. s. of (37a)

as

N

pi m) [ L pii (^i)7 i (m+i) + k(i)]
=1

^i•d+(m+l) - ^idi(m+l) + t i^(m+l) , di ? 0 , di z 0,

and the minimizing Pi satisfies

^i = 1 if d-(m+l) ? di(m+l)

= 0 if d+(m+l) > di(m+1)

? otherwise.

however, we have seen in past sections that, in the presense of

ti
'state variable' constraints (54) ( except GOp(0 = b0 ), the control may be

random for some times r n and states i. Thus, with these state variable

constraints, the control may well be singular; i.e., d+(m+l) = d-(m+l),

and the maximum principle yields no information directly, in analogy to the

state variable constrained deterministic case. Existing works (e.g. [10].

on continuous time stochastic maximum principles - dealing with ter-

J

it

[l

0

minal time 'average' constraints g(EX T ) = 0 have not adequately accounted
	 1

for the po .Q ibil.ity of randomization. It would also b` worthwhile to study
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methods for extracting inform.-ition from the stochastic Hitmiltonia.r formula-

tion in the singular situation. 	 one of the advantages of our study of

the simple Markov chain problem, is that the singular - and randomization -

problems are made quite apparent, a situation riot easily seen from the con-

tinuous time formulations.

r
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Figure 3. Optimal Control Values for the Minimum Average Time Problem.
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